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Machine learning (ML) is considered a promising tool in 
materials synthesis and characterization, and its innovative 
application in the near future because of its high compatibility 
with imaging, prediction, simulation, and natural language 
processing [1-4]. Depending on the intended application of the 
generated materials, operating conditions are o�en optimized 
during regular material synthesis and preparation [5]. In this 
context, ML models based on experimental data may be helpful 
to improve the synthesis procedures and their parameters in the 
event that simulations are successful. �is necessitates the 
creation of novel data-driven techniques for identifying patterns 
across various length, time, and structure-property correlations. 
In terms of their characterization, analysis, and expansion of 
applications, these data-driven approaches exhibit signi�cant 
promise in materials research [6,7]. ML models have recently 
demonstrated that a number of criteria related to the structure 
and processing of materials impact the characteristics and 
functionality of manufactured components, which in turn 
impacts the performance of the materials. ML can also be used 
to predict material properties and their classi�cation based on 
di�erent parameters [8-10].

 Additionally, numerous studies have demonstrated the 
value of using ML-based algorithms to classify materials 
accurately based on various factors, including size, shape, and 
chemical and physical characteristics [11-13]. However, the lack 
of new knowledge and understanding resulting from the 
developed models is the main criticism of these methods in 
science. 

 �e main reason for this is that more advanced applications 
of ML are frequently viewed as "black boxes." �ese 
computer-generated models are challenging for people to 
comprehend [14]. Additional restrictions, particularly for 
scienti�c models, include a limited number of parameters and 
conformity to physical principles. One of the major roles of data 
science is data collection and simulation, using accurate models 
to forecast material properties or to predict their classi�cation 
and investigate their applications. Various models, including 
but not limited to cross-validation and careful selection, are 
useful methods to build accurate, simple, and e�cient models 
[15,16]. Although ML approaches o�er a wide range of 
intriguing possibilities for materials design, they also have 
several drawbacks and space for improvement. It is di�cult to 
determine the accuracy, quality, and availability of the data and 
statistics used in ML because there are insu�cient ground truth 
data, comparison metrics, or potentially irreproducible data 
[17]. �e most recent developments and di�culties with 
applying ML in materials science were outlined by Choudhary 

et al. in their summary [18]. �e authors of this review article 
discussed the evolution of computational approaches, the 
di�culties they encounter with normalization, ethics, and 
regulations, as well as issues with algorithm validation and 
interpretability, training-validation-test-related issues, and 
normalizing. �e materials science community requires more 
technical research and laboratory procedures to create 
accurate and e�cient arti�cial intelligence (AI) models to 
overcome its current obstacles and open up new possibilities 
for practical applications.

 �e use of Bayesian meta-learning algorithms to 
automatically enhance bulk crystallinity over numerous Joule 
heating reactions has been described as a practical use of ML 
models [19] to improve materials synthesis, operational 
conditions optimization, and achieve outstanding materials 
with desired properties.

 Saad et al. noted that four alternative ML models were 
created in energy storage systems [20]. Compared to other 
models created for this purpose, the constructed arti�cial 
neural network (ANN) model produces exceptionally 
accurate prediction results, with a root-mean-square 
deviation (RMSE) of approximately 60.42. In addition, based 
on the �ndings of the work, the authors concluded that the 
combination of oxygen and graphene had the biggest impact 
on the ANN model.

 In our most recent work, as shown in Figure 1, we created 
a brand-new arti�cial neural network based on the results of 
an electrochemical sensor for selective detection of catechol 
made of molecularly imprinted polymers and reduced 
graphene oxide (MIP/rGO@Fe3O4/GCE). �e study 
proposed a solution to detect lower concentrations of the 
analyte that are lower than the limit of detection using an 
application of a new arti�cial neural network model [21].

 Numerous studies have shown that ML imaging-based 
models can accurately discriminate between di�erent 
materials based on their morphological traits. In a recent 
study, a very interesting model has been developed to 
investigate the structure and morphology of synthesized 
carbon nanotubes (CNTs) [22]. To establish mechanical 
properties, a mechanical compression simulation was 
employed. Deep learning (DL) neural networks were also 
created to forecast the class label for the CNTs generated 
images. �ese networks were validated and tested using FEM 
physics-simulation approaches. Another ML model is then 
used to forecast the physical stress of CNT forest physical and 
growth features [22,23].

 In another study, Matos et al. presented a predictive 
multiscale model of the multiaxial strain-sensing response of 
conductive CNT-polymer composites. Detailed 
physically-based �nite element (FE) models at the micron 
scale are used to produce training data for an arti�cial neural 
network; the latter is then used, at the macroscopic scale, to 
predict the electro-mechanical response of components of 
arbitrary shape subject to a non-uniform, multiaxial strain 
�eld, allowing savings in computational time of six orders of 
magnitude. We apply this methodology to explore the 

application of CNT-polymer composites to construct di�erent 
types of sensors and damage detection [23]. 

 In conclusion, ML applications in materials science have 
signi�cantly contributed to understanding the interactions 
between materials, properties prediction, classi�cation, and 
new materials development. However, di�erent ML 
algorithms' prediction accuracy and e�ciency vary for various 
metal-based nanomaterials challenges. It is crucial to evaluate 
recent developments in the application of ML approaches for 
challenges involving metal-based nanomaterials because of 
this and the high dimensionality and nonlinearity of the 

datasets that are now accessible. Future research is planned to 
help boost interest in this new and under-explored �eld of 
materials informatics and understand the applicability of 
various ML algorithms to various types of metal-based 
nanomaterials challenges.

 ML approaches have the ability to change how the 
community views the link between experiment, simulation, 
and theory. �e combination of ML, experiment, and 
simulation, when combined with automation (robotics), has 
the potential to construct integrated systems that optimize and 
unlock their applications in materials science. To summarize, 
ML-based methods in materials science are a rapidly growing 
subject. �e problems ahead involve determining synthesis and 
characterization outputs, rates, and (internal) state 
distributions in a precise, quantitative, and thorough manner. 

 When combined with robotic platforms, ML can optimize 
reaction yields and conditions to control materials synthesis 
and acquire the desired attributes depending on the 
application. Appreciable improvements in turnover rates can be 
expected in the �eld of enzyme design for materials 
functionalization from coupling experiments with ML-based 
approaches. Recent advances in protein structure prediction 
will provide important insights for protein-lig interaction and 
recognition. Finally, for speci�c processes (e.g., methane 
oxidation), exploring whole reaction networks has only 
recently become practical. Exploration of materials synthesis, 
physical sciences, and chemistry will become feasible with 
enhanced, high-quality reference data.

Disclosure statement
No potential con�ict of interest was reported by the author.

References
1. Jia Y, Hou X, Wang Z, Hu X. Machine learning boosts the design 

and discovery of nanomaterials. ACS Sustain Chem Eng. 
2021;9(18):6130-6147.

2. Winkler DA. Role of arti�cial intelligence and machine learning in 
nanosafety. Small. 2020;16(36):e2001883.

3. Duan Y, Coreas R, Liu Y, Bitounis D, Zhang Z, Parviz D, et al. 
Prediction of protein corona on nanomaterials by machine 
learning using novel descriptors. NanoImpact. 2020;17:100207.

4. Meskher H, Belhaouari SB, �akur AK, Sathyamurthy R, Singh P, 
Khelfaoui I, et al. A review about COVID-19 in the MENA region: 
environmental concerns and machine learning applications. 
Environ Sci Pollut Res Int. 2022;29(55):82709-82728.

5. Meskher H, Achi F, Ha S, Berregui B, Babanini F, Belkhalfa H. 
Sensitive rGO/MOF based electrochemical sensor for 
penta-chlorophenol detection: a novel arti�cial neural network 
(ANN) application. Sens diagn. 2022;1(5):1032-1043.

6. Himanen L, Geurts A, Foster AS, Rinke P. Data‐driven materials 
science: status, challenges, and perspectives. Adv Sci. 
2019;6(21):1900808.

7. Pollice R, dos Passos Gomes G, Aldeghi M, Hickman RJ, Krenn M, 
Lavigne C, et al. Data-driven strategies for accelerated materials 
design. Acc Chem Res. 2021;54(4):849-860.

8. Meskher H, Ragdi T, �akur AK, Ha S, Khelfaoui I, Sathyamurthy 
R, et al. A review on CNTs-based electrochemical sensors and 
biosensors: unique properties and potential applications. Crit Rev 
Anal Chem. 2023:1-24.

9. Meskher H, Hussain CM, �akur A, Sathyamurthy R, Lynch I, 
Singh P, et al. Recent Trends in Carbon Nanotube (CNT) based 
biosensors for fast and sensitive detection of human viruses: A 
critical review. Nanoscale Adv. 2022;5(4):992-1010.

10. Meskher H, Achi F. Electrochemical sensing systems for the 
analysis of catechol and hydroquinone in the aquatic 

environments: a critical review. Crit Rev Anal Chem. 2022:1-14.
11. Huo H, Rong Z, Kononova O, Sun W, Botari T, He T, et al. 

Semi-supervised machine-learning classi�cation of materials 
synthesis procedures. Npj Comput Mater. 2019;5(1):62.

12. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine 
learning for molecular and materials science. Nature. 
2018;559(7715):547-555.

13. Penumuru DP, Muthuswamy S, Karumbu P. Identi�cation and 
classi�cation of materials using machine vision and machine 
learning in the context of industry 4.0. J Intell Manuf. 
2020;31(5):1229-1241.

14. Stoll A, Benner P. Machine learning for material characterization 
with an application for predicting mechanical properties. GAMM 
Mitt. 2021;44(1):e202100003.

15. Hameed MM, AlOmar MK, Baniya WJ, AlSaadi MA. 
Incorporation of arti�cial neural network with principal 
component analysis and cross-validation technique to predict 
high-performance concrete compressive strength. Asian J Civ Eng. 
2021;22:1019-1031.

16. Khan PM, Roy K. Current approaches for choosing feature 
selection and learning algorithms in quantitative 
structure–activity relationships (QSAR). Expert Opin Drug 
Discov . 2018;13(12):1075-1089.

17. Hegde VI, Borg CK, del Rosario Z, Kim Y, Hutchinson M, Antono 
E, et al. Quantifying uncertainty in high-throughput density 
functional theory: a comparison of AFLOW, Materials Project, 
and OQMD. Phys Rev Materials. 2023;7(5):053805.

18. Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, et al. 
Recent advances and applications of deep learning methods in 
materials science. Npj Comput Mater. 2022;8(1):59.

19. Beckham JL, Wyss KM, Xie Y, McHugh EA, Li JT, Advincula PA, et 
al. Machine learning guided synthesis of �ash graphene. Adv 
Mater. 2022;34(12):2106506.

20. Saad AG, Emad-Eldeen A, Taw�k WZ, El-Deen AG. Data-driven 
machine learning approach for predicting the capacitance of 
graphene-based supercapacitor electrodes. J Energy Storage. 
2022;55:105411.

21. Meskher H, Belhaouari SB, Deshmukh K, Hussain CM, 
Shari�anjazi F. A Magnetite Composite of Molecularly Imprinted 
Polymer and Reduced Graphene Oxide for Sensitive and Selective 
Electrochemical Detection of Catechol in Water and Milk 
Samples: An Arti�cial Neural Network (ANN) Application. J 
Electrochem Soc. 2023;170(4):047502.

22. Hajilounezhad T, Bao R, Palaniappan K, Bunyak F, Calyam P, 
Maschmann MR. Predicting carbon nanotube forest attributes and 
mechanical properties using simulated images and deep learning. 
Npj Comput Mater. 2021;7(1):134.

23. Albuquerque Da Silva Matos M, Pinho S, Tagarielli V. Application 
of machine learning to predict the multiaxial strain-sensing 
response of CNT-polymer composites. Carbon. 2019;146.

SYNTHESIS, CHARACTERIZATION AND PROCESSING OF NEW MATERIALS 
FOR INNOVATIVE APPLICATIONS
Jan-Mar 2024, VOL. 1, ISSUE 1, pp. 1-3
https://doi.org/10.61577/scpnmia.2024.100001



Machine learning (ML) is considered a promising tool in 
materials synthesis and characterization, and its innovative 
application in the near future because of its high compatibility 
with imaging, prediction, simulation, and natural language 
processing [1-4]. Depending on the intended application of the 
generated materials, operating conditions are o�en optimized 
during regular material synthesis and preparation [5]. In this 
context, ML models based on experimental data may be helpful 
to improve the synthesis procedures and their parameters in the 
event that simulations are successful. �is necessitates the 
creation of novel data-driven techniques for identifying patterns 
across various length, time, and structure-property correlations. 
In terms of their characterization, analysis, and expansion of 
applications, these data-driven approaches exhibit signi�cant 
promise in materials research [6,7]. ML models have recently 
demonstrated that a number of criteria related to the structure 
and processing of materials impact the characteristics and 
functionality of manufactured components, which in turn 
impacts the performance of the materials. ML can also be used 
to predict material properties and their classi�cation based on 
di�erent parameters [8-10].

 Additionally, numerous studies have demonstrated the 
value of using ML-based algorithms to classify materials 
accurately based on various factors, including size, shape, and 
chemical and physical characteristics [11-13]. However, the lack 
of new knowledge and understanding resulting from the 
developed models is the main criticism of these methods in 
science. 

 �e main reason for this is that more advanced applications 
of ML are frequently viewed as "black boxes." �ese 
computer-generated models are challenging for people to 
comprehend [14]. Additional restrictions, particularly for 
scienti�c models, include a limited number of parameters and 
conformity to physical principles. One of the major roles of data 
science is data collection and simulation, using accurate models 
to forecast material properties or to predict their classi�cation 
and investigate their applications. Various models, including 
but not limited to cross-validation and careful selection, are 
useful methods to build accurate, simple, and e�cient models 
[15,16]. Although ML approaches o�er a wide range of 
intriguing possibilities for materials design, they also have 
several drawbacks and space for improvement. It is di�cult to 
determine the accuracy, quality, and availability of the data and 
statistics used in ML because there are insu�cient ground truth 
data, comparison metrics, or potentially irreproducible data 
[17]. �e most recent developments and di�culties with 
applying ML in materials science were outlined by Choudhary 

et al. in their summary [18]. �e authors of this review article 
discussed the evolution of computational approaches, the 
di�culties they encounter with normalization, ethics, and 
regulations, as well as issues with algorithm validation and 
interpretability, training-validation-test-related issues, and 
normalizing. �e materials science community requires more 
technical research and laboratory procedures to create 
accurate and e�cient arti�cial intelligence (AI) models to 
overcome its current obstacles and open up new possibilities 
for practical applications.

 �e use of Bayesian meta-learning algorithms to 
automatically enhance bulk crystallinity over numerous Joule 
heating reactions has been described as a practical use of ML 
models [19] to improve materials synthesis, operational 
conditions optimization, and achieve outstanding materials 
with desired properties.

 Saad et al. noted that four alternative ML models were 
created in energy storage systems [20]. Compared to other 
models created for this purpose, the constructed arti�cial 
neural network (ANN) model produces exceptionally 
accurate prediction results, with a root-mean-square 
deviation (RMSE) of approximately 60.42. In addition, based 
on the �ndings of the work, the authors concluded that the 
combination of oxygen and graphene had the biggest impact 
on the ANN model.

 In our most recent work, as shown in Figure 1, we created 
a brand-new arti�cial neural network based on the results of 
an electrochemical sensor for selective detection of catechol 
made of molecularly imprinted polymers and reduced 
graphene oxide (MIP/rGO@Fe3O4/GCE). �e study 
proposed a solution to detect lower concentrations of the 
analyte that are lower than the limit of detection using an 
application of a new arti�cial neural network model [21].

 Numerous studies have shown that ML imaging-based 
models can accurately discriminate between di�erent 
materials based on their morphological traits. In a recent 
study, a very interesting model has been developed to 
investigate the structure and morphology of synthesized 
carbon nanotubes (CNTs) [22]. To establish mechanical 
properties, a mechanical compression simulation was 
employed. Deep learning (DL) neural networks were also 
created to forecast the class label for the CNTs generated 
images. �ese networks were validated and tested using FEM 
physics-simulation approaches. Another ML model is then 
used to forecast the physical stress of CNT forest physical and 
growth features [22,23].

 In another study, Matos et al. presented a predictive 
multiscale model of the multiaxial strain-sensing response of 
conductive CNT-polymer composites. Detailed 
physically-based �nite element (FE) models at the micron 
scale are used to produce training data for an arti�cial neural 
network; the latter is then used, at the macroscopic scale, to 
predict the electro-mechanical response of components of 
arbitrary shape subject to a non-uniform, multiaxial strain 
�eld, allowing savings in computational time of six orders of 
magnitude. We apply this methodology to explore the 

application of CNT-polymer composites to construct di�erent 
types of sensors and damage detection [23]. 

 In conclusion, ML applications in materials science have 
signi�cantly contributed to understanding the interactions 
between materials, properties prediction, classi�cation, and 
new materials development. However, di�erent ML 
algorithms' prediction accuracy and e�ciency vary for various 
metal-based nanomaterials challenges. It is crucial to evaluate 
recent developments in the application of ML approaches for 
challenges involving metal-based nanomaterials because of 
this and the high dimensionality and nonlinearity of the 

Figure 1. (A): Synthesis procedure of MIP and GO@Fe3O4 and (B): Catechol detection and artificial neural network preparation. Reproduced 
with permission from IOP [21].

datasets that are now accessible. Future research is planned to 
help boost interest in this new and under-explored �eld of 
materials informatics and understand the applicability of 
various ML algorithms to various types of metal-based 
nanomaterials challenges.

 ML approaches have the ability to change how the 
community views the link between experiment, simulation, 
and theory. �e combination of ML, experiment, and 
simulation, when combined with automation (robotics), has 
the potential to construct integrated systems that optimize and 
unlock their applications in materials science. To summarize, 
ML-based methods in materials science are a rapidly growing 
subject. �e problems ahead involve determining synthesis and 
characterization outputs, rates, and (internal) state 
distributions in a precise, quantitative, and thorough manner. 

 When combined with robotic platforms, ML can optimize 
reaction yields and conditions to control materials synthesis 
and acquire the desired attributes depending on the 
application. Appreciable improvements in turnover rates can be 
expected in the �eld of enzyme design for materials 
functionalization from coupling experiments with ML-based 
approaches. Recent advances in protein structure prediction 
will provide important insights for protein-lig interaction and 
recognition. Finally, for speci�c processes (e.g., methane 
oxidation), exploring whole reaction networks has only 
recently become practical. Exploration of materials synthesis, 
physical sciences, and chemistry will become feasible with 
enhanced, high-quality reference data.
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Machine learning (ML) is considered a promising tool in 
materials synthesis and characterization, and its innovative 
application in the near future because of its high compatibility 
with imaging, prediction, simulation, and natural language 
processing [1-4]. Depending on the intended application of the 
generated materials, operating conditions are o�en optimized 
during regular material synthesis and preparation [5]. In this 
context, ML models based on experimental data may be helpful 
to improve the synthesis procedures and their parameters in the 
event that simulations are successful. �is necessitates the 
creation of novel data-driven techniques for identifying patterns 
across various length, time, and structure-property correlations. 
In terms of their characterization, analysis, and expansion of 
applications, these data-driven approaches exhibit signi�cant 
promise in materials research [6,7]. ML models have recently 
demonstrated that a number of criteria related to the structure 
and processing of materials impact the characteristics and 
functionality of manufactured components, which in turn 
impacts the performance of the materials. ML can also be used 
to predict material properties and their classi�cation based on 
di�erent parameters [8-10].

 Additionally, numerous studies have demonstrated the 
value of using ML-based algorithms to classify materials 
accurately based on various factors, including size, shape, and 
chemical and physical characteristics [11-13]. However, the lack 
of new knowledge and understanding resulting from the 
developed models is the main criticism of these methods in 
science. 

 �e main reason for this is that more advanced applications 
of ML are frequently viewed as "black boxes." �ese 
computer-generated models are challenging for people to 
comprehend [14]. Additional restrictions, particularly for 
scienti�c models, include a limited number of parameters and 
conformity to physical principles. One of the major roles of data 
science is data collection and simulation, using accurate models 
to forecast material properties or to predict their classi�cation 
and investigate their applications. Various models, including 
but not limited to cross-validation and careful selection, are 
useful methods to build accurate, simple, and e�cient models 
[15,16]. Although ML approaches o�er a wide range of 
intriguing possibilities for materials design, they also have 
several drawbacks and space for improvement. It is di�cult to 
determine the accuracy, quality, and availability of the data and 
statistics used in ML because there are insu�cient ground truth 
data, comparison metrics, or potentially irreproducible data 
[17]. �e most recent developments and di�culties with 
applying ML in materials science were outlined by Choudhary 

et al. in their summary [18]. �e authors of this review article 
discussed the evolution of computational approaches, the 
di�culties they encounter with normalization, ethics, and 
regulations, as well as issues with algorithm validation and 
interpretability, training-validation-test-related issues, and 
normalizing. �e materials science community requires more 
technical research and laboratory procedures to create 
accurate and e�cient arti�cial intelligence (AI) models to 
overcome its current obstacles and open up new possibilities 
for practical applications.

 �e use of Bayesian meta-learning algorithms to 
automatically enhance bulk crystallinity over numerous Joule 
heating reactions has been described as a practical use of ML 
models [19] to improve materials synthesis, operational 
conditions optimization, and achieve outstanding materials 
with desired properties.

 Saad et al. noted that four alternative ML models were 
created in energy storage systems [20]. Compared to other 
models created for this purpose, the constructed arti�cial 
neural network (ANN) model produces exceptionally 
accurate prediction results, with a root-mean-square 
deviation (RMSE) of approximately 60.42. In addition, based 
on the �ndings of the work, the authors concluded that the 
combination of oxygen and graphene had the biggest impact 
on the ANN model.

 In our most recent work, as shown in Figure 1, we created 
a brand-new arti�cial neural network based on the results of 
an electrochemical sensor for selective detection of catechol 
made of molecularly imprinted polymers and reduced 
graphene oxide (MIP/rGO@Fe3O4/GCE). �e study 
proposed a solution to detect lower concentrations of the 
analyte that are lower than the limit of detection using an 
application of a new arti�cial neural network model [21].

 Numerous studies have shown that ML imaging-based 
models can accurately discriminate between di�erent 
materials based on their morphological traits. In a recent 
study, a very interesting model has been developed to 
investigate the structure and morphology of synthesized 
carbon nanotubes (CNTs) [22]. To establish mechanical 
properties, a mechanical compression simulation was 
employed. Deep learning (DL) neural networks were also 
created to forecast the class label for the CNTs generated 
images. �ese networks were validated and tested using FEM 
physics-simulation approaches. Another ML model is then 
used to forecast the physical stress of CNT forest physical and 
growth features [22,23].

 In another study, Matos et al. presented a predictive 
multiscale model of the multiaxial strain-sensing response of 
conductive CNT-polymer composites. Detailed 
physically-based �nite element (FE) models at the micron 
scale are used to produce training data for an arti�cial neural 
network; the latter is then used, at the macroscopic scale, to 
predict the electro-mechanical response of components of 
arbitrary shape subject to a non-uniform, multiaxial strain 
�eld, allowing savings in computational time of six orders of 
magnitude. We apply this methodology to explore the 

application of CNT-polymer composites to construct di�erent 
types of sensors and damage detection [23]. 

 In conclusion, ML applications in materials science have 
signi�cantly contributed to understanding the interactions 
between materials, properties prediction, classi�cation, and 
new materials development. However, di�erent ML 
algorithms' prediction accuracy and e�ciency vary for various 
metal-based nanomaterials challenges. It is crucial to evaluate 
recent developments in the application of ML approaches for 
challenges involving metal-based nanomaterials because of 
this and the high dimensionality and nonlinearity of the 

datasets that are now accessible. Future research is planned to 
help boost interest in this new and under-explored �eld of 
materials informatics and understand the applicability of 
various ML algorithms to various types of metal-based 
nanomaterials challenges.

 ML approaches have the ability to change how the 
community views the link between experiment, simulation, 
and theory. �e combination of ML, experiment, and 
simulation, when combined with automation (robotics), has 
the potential to construct integrated systems that optimize and 
unlock their applications in materials science. To summarize, 
ML-based methods in materials science are a rapidly growing 
subject. �e problems ahead involve determining synthesis and 
characterization outputs, rates, and (internal) state 
distributions in a precise, quantitative, and thorough manner. 

 When combined with robotic platforms, ML can optimize 
reaction yields and conditions to control materials synthesis 
and acquire the desired attributes depending on the 
application. Appreciable improvements in turnover rates can be 
expected in the �eld of enzyme design for materials 
functionalization from coupling experiments with ML-based 
approaches. Recent advances in protein structure prediction 
will provide important insights for protein-lig interaction and 
recognition. Finally, for speci�c processes (e.g., methane 
oxidation), exploring whole reaction networks has only 
recently become practical. Exploration of materials synthesis, 
physical sciences, and chemistry will become feasible with 
enhanced, high-quality reference data.
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